SciELO - Scientific Electronic Library Online

 
vol.25 número2 índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Investigação Operacional

versão impressa ISSN 0874-5161

Inv. Op. v.25 n.2 Lisboa  2005

 

Aplicação do algoritmo volumétrico à resolução aproximada e exacta do problema do caixeiro viajante assimétrico

Ana Maria Rocha †

Edite M.G.P. Fernandes †

João Soares * ‡

† Departamento de Produção e Sistemas, Universidade do Minho

arocha@dps.uminho.pt

emgpf@dps.uminho.pt

‡ Departamento de Matemática, Universidade de Coimbra

jsoares@mat.uc.pt

 

Title: Application of the volume algorithm to the approximate and exact solving of the asymmetric traveling salesman problem.

Abstract

In this paper we present computational results with the volume algorithm, a variant of the subgradient method, when solving the linear relaxation that stems from the extended disaggregated flow formulation of the Asymmetric Travelling Salesman Problems. Computational experiments were performed on a selection of instances from the TSPLib and some randomly generated instances according to the Dimacs  Implementation  Challenge. We have also tried ATSP heuristics within the volume algorithm. Computational experiments show moderated success on medium-scale instances.

Keywords: Asymmetric travelling salesman problem, Disaggregated flow formulation, Lagrangian relaxation.

Resumo

Neste artigo apresentamos resultados computacionais obtidos com o algoritmo volumétrico, uma variante do método do subgradiente, na resolução da relaxação linear que decorre da formulação estendida de fluxo desagregado para o problema do Caixeiro Viajante Assimétrico. As experiências computacionais foram realizadas numa selecção de instâncias da TSPLib e num conjunto de instâncias geradas aleatoriamente de acordo com o Dimacs  Implementation  Challenge. Também experimentámos a  aplicação de heurísticas durante a execução do algoritmo volumétrico. As experiências computacionais mostram sucesso moderado com instâncias de média dimensão.

Texto completo apenas disponível em PDF.

Full text only in PDF.

 

Referências

R. Anbil, J. J. Forrest, and W. R. Pulleyblank. Column generation and the airline crew pairing problem. Documenta Mathematica, Extra Volume ICM III:677-686, 1998.        [ Links ]

L. Bahiense, F. Barahona, and O. Porto. Solving steiner tree problems in graphs with lagrangian relaxation. Journal of Combinatorial Optimization, 3(7):259-282, 2003.

L. Bahiense, N. Maculan, and C. Sagastizábal. The volume algorithm revisited: Relation with bundle methods. Mathematical Programming, 94:41-70, 2002.

F. Barahona and R. Anbil. The volume algorithm: Producing primal solutions with a subgradient method. Mathematical Programming, 87:385-399, 2000.

F. Barahona and R. Anbil. On some difficult linear programs coming from set partitioning. Discrete Applied Mathematics, 118(1-2):3-11, 2002.

F. Barahona and F. A. Chudak. Near-optimal solutions to large scale facility location problems. Technical report, IBM Watson Research Center, 1999.

F. Barahona and L. Ladanyi. Branch and cut based on the volume algorithm: Steiner trees in graphs and max-cut. Technical report, IBM Watson Research Center, 2001.

A. Claus. A new formulation for the travelling salesman problem. SIAM Journal of Algebraic and Discrete Methods, 5:21-25, 1984.

P. V. D. Cruyssen and M. Rijckaert. Heuristic for the asymmetric travelling salesman problem. Journal of the Operational Research Society, 29(7):697-701, 1978. 18A. M. Rocha, E. M. G. P. Fernandes, J. Soares / Investigação Operacional, 25 (2005) 1-19

G. Dantzig, D. Fulkerson, and S. Johnson. Solution of a large-scale traveling salesman problem. Operations Research, 2:393-410, 1954.

M. Fischetti and P. Toth. A polyhedral approach to the asymmetric traveling salesman problem. Management Science, 43(11):1520-1536, 1997.

B. Gavish and S. Graves. The traveling salesman problem and related problems. Technical report, Operations Research Center, MIT, 1978. Working Paper OR-078-78.

F. Glover, G. Gutin, A. Yeo, and A. Zverovich. Construction heuristics for the asymmetric TSP. European Journal of Operational Research, 129:555-568, 2001.

L. Gouveia and J. M. Pires. Uma análise comparativa de formulações para o problema do caixeiro viajante assimétrico. Investigação Operacional, 16:89-114, 1996.

L. Gouveia and J. M. Pires. The asymmetric travelling salesman problem and a reformulation of the miller-tucker-zemlin constraints. European Journal of Operational Research, 112(1):134-146, 1999.

L. Gouveia and J. M. Pires. The asymmetric travelling salesman problem: on generalizations of disaggregated Miller-Tucker-Zemlin constraints. Discrete Applied Mathematics, 112(1-3):12-145, 2001.

G. Gutin and A.P. Punnen, editors. The traveling salesman problem and its variations, volume 12 of Combinatorial Optimization. Kluwer Academic Publishers, Dordrecht, 2002.

M. Held and R. M. Karp. The traveling-salesman problem and minimum spanning trees. Operations Research, 18:1138-1162, 1970.

M. Held and R. M. Karp. The traveling-salesman problem and minimum spanning trees: Part II. Mathematical Programming, 1:6-25, 1971.

M. Held, P. Wolfe, and H. P. Crowder. Validation of subgradient optimization. Mathematical Programming, 6:62-68, 1974.

K. Helsgaun. An effective implementation of the Lin-Kernighan traveling salesman problem. European Journal of Operations Research, 126:106-130, 2000. Code available at http://www.akira.ruc.dk/~keld/research/LKH/LKH-1.2/DOC/LKH_REPORT.pdf.

C. Hurwitz and R. Craig. GNU Tsp_solve. Version 1.3.8, 1994. Available at http://www.cs.sunysb.edu/~algorith/implement/tsp/distrib/tsp_solve/.

D. Johnson and C. Papadimitriou. Performance guarantees for heuristics. In E. Lawler, J. Lenstra, A. R. Kan, and D. Shmoys, editors, The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, pages 145-180. John Wiley & Sons, Chichester, 1985. A. M. Rocha, E. M. G. P. Fernandes, J. Soares / Investigação Operacional, 25 (2005) 1-1919

D. Jonhson, L. McGeoch, F. Glover, and C. Rego. Website for the DIMACS implementation challenge on the traveling salesman problem. http://www.research.att.com/~dsj/chtsp.

R. Karp and J. Steele. Probabilistic analysis of heuristics. In E. Lawler, J. Lenstra, A. R. Kan, and D. B. Shmoys, editors, The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, pages 181-205. John Wiley & Sons, Chichester, 1985.

A. Langevin, F. Soumis, and J. Desrosiers. Classification of travelling salesman problem formulations. Operations Research Letters, 9:127-132, 1990.

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors. The traveling salesman problem. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons Ltd., Chichester, 1990. A guided tour of combinatorial optimization, Reprint of the 1985 original, A Wiley-Interscience Publication.

S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling salesman problem. Operations Research, 21:498-516, 1973.

C. Miller, A. Tucker, and R. Zemlin. Integer programming formulation of traveling salesman problems. Journal of ACM, 7:326-329, 1960.

M. Padberg and T. Sung. An analytical comparison of different formulations of the travelling salesman problem. Mathematical Programming, 52:315-357, 1991.

J. M. O. Pires. Formulações para o problema do caixeiro viajante assimétrico e sua aplicação a um problema de desenho de redes com topologia em forma de anel. PhD thesis, Universidade de Lisboa, Setembro 2001.

G. Reinelt. TSPLIB - a traveling salesman problem library. ORSA Journal on Computing, 3:376-384, 1991. Available at http://www.iwr.uniheidelberg. de/groups/comopt/software/TSPL IB95.

R. Wong. Integer programming formulations of the travelling salesman problem. pages 149-152. Proceedings of the IEEE International Conference of Circuits and Computers, 1980.

 

* João Soares acknowledges partial financial support from Fundação para a Ciência e Tecnologia (Projecto POCTI/MAT/14243/1998).